

Ultra-high-resolution 3D-printing for biomedical applications

BioTuesdays – Lyon, 5 février 2019

Denis Barbier

High-precision 3D-printing

Customers needs:

- Manufacture micro-parts with sub-micron resolution
- Application in microfluidics, Medical-Device, cellular biology & tissue-engineering, microrobotics

Our solution:

 Laser 3D-printing in polymers and biological materials.

How can we print with sub-micron resolution?

- The Two-Photon-Absorption Technology
 - Polymerisation or Molecular cross linking process
 - Polymerisation occurs only within the focal-point of the laser

How small can we print?

- Voxel size (Voxel = 3D Pixel)
 - 200 x 600nm in our standard system
 - Depends on laser wavelength
 - Depends on material photo-chemical reaction
 - Can be as small as 75nm in diameter
- Adjustable voxel size
 - Adjustable from 0.2 to 2µm
 - Adjustable resolution for faster printing

SEM image of a single voxel

Lateral x-section: 0.2um

Vertical x-section: 0.6um

Direct laser writing with submicron resolution

Products

Our offer: a 3D-micro-printing system for research works

- μFAB-3D
 - Standard System
 - Advanced System

Products

 Our offer: a 3D-micro-printing system for prototyping works

ALTRASPIN

- Key specifications:
 - High resolution (0.2μm)
 - Adjustable writing resolution for high-speed
 - cm² printed surface, on flat or non-flat substrates (up to 100x75mm²)
 - Any 3D shape
 - Compatible with a large range of polymer materials, including biomaterials
 - Intuitive software, with customer specific plug-ins

Extra-small objects :

9-µm-high structure (1µm-wide bars)

© *Microlight3D*P.Paliard

2-µm-high bacteria cage

Using confined bacteria as building blocks to generate fluid flow

Zhiyong Gao, He Li, Xiao Chen and H. P. Zhang

DOI: 10.1039/c5lc01093d

■ Scaffolds – for metamaterials or cells studies

© Collaboration Liphy –SIMAP –Microlight3D O.Stephan, F. Mercier, M. Bouriau

© Collaboration Liphy –Microlight3D O.Stephan, M. Bouriau

Scaffolds for cells studies: Ormocomp + fibronectin + fibroblast

Scaffolds for cells studies: PEG-DA + Epithelial Cells

Application example

3D-printing of nanopillars array to measure cell behavior

Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior Nina Buch-Månson, Arnaud Spangenberg, Laura Piedad Chia Gomez, Jean-Pierre Malval, Olivier Soppera & Karen L. Martinez Scientific Reports 2017

Cells filter

Micro needles

Direct laser writing with sub-micron resolution

- The 2PP, a novel laser-based writing technology, for real 3D with sub-micron resolution.
- A patented optical architecture for high-speed writing
- A laser-path optimisation software, for high-speed 3D shape writing, while preserving complexity and reproducibility
- Compatible with a wide range of polymers and biological materials

